Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Dr. Michele Serra
Moritz Schick

## Real Algebraic Geometry I

## Exercise Sheet 7 <br> Tarski-Seidenberg principle

## Exercise 25

(4 points)
Let $n \in \mathbb{N}$ and $0 \neq f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. Show that $\mathbb{R}^{n} \backslash Z(f)$ is dense in $\mathbb{R}^{n}$. Is this still true if we replace $\mathbb{R}$ by any real closed field $R$ ?

## Exercise 26

(4 points)
Let $Z \subseteq \mathbb{R}^{2}$ be the following zigzag curve in $\mathbb{R}^{2}$.

(a) Show that $Z$ is not semialgebraic.
(b) Let $A$ be a compact semialgebraic subset of $\mathbb{R}^{2}$. Show that $A \cap Z$ is semialgebraic.

## Exercise 27

(4 points)
Let $\Phi(x)$ be the following first order formula in the language of real closed fields with one free variable $x$ :

$$
\neg \forall y\left(\exists z\left[\left(\neg x_{3}=0\right) \wedge y^{2}+x y-z^{2}-1=0\right] \vee-y^{2}-x y+1>0\right) .
$$

Find a quantifier free first order formula in the language of real closed fields $\Psi(x)$ such that $\Phi(x) \sim \Psi(x)$.

## Exercise 28

## (4 points)

Let $R$ be a real closed field. Decide which of the following sets $A$ are definable in $R$ (see Definition 2.2 of Lecture 12). For the definable sets, decide whether they can be defined without parameters, i.e. whether there is a first order formula $\Phi(\underline{X})$ with free variables $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ such that $A=\left\{\underline{r} \in R^{n} \mid \Phi(\underline{r})\right.$ is true in $\left.R\right\}$. Justify your answers!
(a) $R=\mathbb{R}, f(x)=\exp \left(-x^{2}\right)-\frac{1}{\mathrm{e}^{2}}$ and $A=\{x \in \mathbb{R} \mid f(x)<0\}$.
(b) $R=\mathbb{R}$ and $A=\{\sqrt{\pi}\}$.
(c) $R$ the real closure of $\mathbb{R}(\mathrm{x})$ with the order induced by $\mathrm{x}>\mathbb{N}$ and $A=\{a \in R \mid a<n$ for some $n \in$ $\mathbb{N}\}$.
(d) $R=\mathbb{R}, \pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2},(x, y, z) \mapsto(x, y)$ and $A=\pi(B)$ for $B=\{(2 \sin \theta, 2 \cos \theta, \theta) \mid \theta \in \mathbb{R}\} \subseteq \mathbb{R}^{3}$.

Please hand in your solutions by Thursday, 15 December 2022, 10:00h in the postbox 14 or per e-mail to your tutor.

