Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Dr. Michele Serra Moritz Schick WS 2022 / 2023

Real Algebraic Geometry I

Exercise Sheet 7 Tarski–Seidenberg principle

Exercise 25

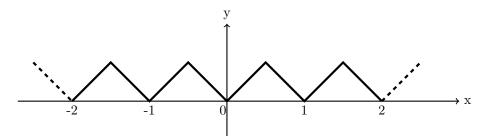
(4 points)

Let $n \in \mathbb{N}$ and $0 \neq f \in \mathbb{R}[x_1, \ldots, x_n]$. Show that $\mathbb{R}^n \setminus Z(f)$ is dense in \mathbb{R}^n . Is this still true if we replace \mathbb{R} by any real closed field R?

Exercise 26

(4 points)

Let $Z \subseteq \mathbb{R}^2$ be the following zigzag curve in \mathbb{R}^2 .



(a) Show that Z is not semialgebraic.

(b) Let A be a compact semialgebraic subset of \mathbb{R}^2 . Show that $A \cap Z$ is semialgebraic.

Exercise 27

(4 points)

Let $\Phi(x)$ be the following first order formula in the language of real closed fields with one free variable x:

$$\neg \forall y \ \left(\exists z \left[(\neg x_3 = 0) \land y^2 + xy - z^2 - 1 = 0 \right] \lor -y^2 - xy + 1 > 0 \right).$$

Find a quantifier free first order formula in the language of real closed fields $\Psi(x)$ such that $\Phi(x) \sim \Psi(x).$

Exercise 28

(4 points)

Let R be a real closed field. Decide which of the following sets A are **definable** in R (see Definition 2.2 of Lecture 12). For the definable sets, decide whether they can be defined without parameters, i.e. whether there is a first order formula $\Phi(\underline{X})$ with free variables $\underline{X} = (X_1, \ldots, X_n)$ such that $A = \{\underline{r} \in \mathbb{R}^n \mid \Phi(\underline{r}) \text{ is true in } R\}$. Justify your answers!

- (a) $R = \mathbb{R}, f(x) = \exp(-x^2) \frac{1}{e^2}$ and $A = \{x \in \mathbb{R} \mid f(x) < 0\}.$
- (b) $R = \mathbb{R}$ and $A = \{\sqrt{\pi}\}.$
- (c) R the real closure of $\mathbb{R}(\mathbf{x})$ with the order induced by $\mathbf{x} > \mathbb{N}$ and $A = \{a \in R \mid a < n \text{ for some } n \in \mathbb{N}\}.$
- (d) $R = \mathbb{R}, \pi : \mathbb{R}^3 \to \mathbb{R}^2, (x, y, z) \mapsto (x, y) \text{ and } A = \pi(B) \text{ for } B = \{(2\sin\theta, 2\cos\theta, \theta) \mid \theta \in \mathbb{R}\} \subseteq \mathbb{R}^3.$

Please hand in your solutions by **Thursday**, **15 December 2022**, **10:00h** in the **postbox 14** or per e-mail to your tutor.