Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Dr. Michele Serra
Moritz Schick

Real Algebraic Geometry I

Exercise Sheet 8
 Semialgebraic sets II

Exercise 29

(4 points)
Let $n, s \in \mathbb{N}$ and let $f_{i}(\underline{T}, X)$ for $i=1, \ldots, s$ be a sequence of polynomials in $n+1$ variables with coefficients in \mathbb{Z}. For each of the following statements A_{k}, show that there exists a boolean combination $B_{k}(\underline{T})=S_{k, 1}(\underline{T}) \vee \ldots \vee S_{k, p}(\underline{T})$ of polynomial equations and inequalities in the variables \underline{T} with coefficients in \mathbb{Z}, such that for any real closed field R and any $\underline{t} \in R^{n}$ we have that $A_{k}(\underline{t})$ holds true if and only if $B_{k}(\underline{t})$ holds true in R.
(a) $A_{1}(\underline{t})$: Exactly one of the polynomials $f_{1}(\underline{t}, X), \ldots, f_{s}(\underline{t}, X)$ has a zero in R.
(b) $A_{2}(\underline{t})$: Each of the polynomials $f_{1}(\underline{t}, X), \ldots, f_{s}(\underline{t}, X)$ has the same number of distinct zeros in R.
(c) $A_{3}(\underline{t})$: The polynomials $f_{1}(\underline{t}, X), \ldots, f_{s}(\underline{t}, X)$ have pairwise distinct zeros, i.e. no two of these polynomials have a common zero.
(d) $A_{4}(\underline{t}):$ For any $x \in R$,

$$
\left|\left\{i \in\{1, \ldots, s\} \mid f_{i}(\underline{t}, x)>0\right\}\right|=\left|\left\{i \in\{1, \ldots, s\} \mid f_{i}(\underline{t}, x)<0\right\}\right|,
$$

i.e. the number of polynomials amongst $f_{1}(\underline{t}, X), \ldots, f_{s}(\underline{t}, X)$ which are positive in x is equal to the number of those which are negative in x.

Exercise 30

(4 points)
Let R be a real closed field.
(a) Let $n \in \mathbb{N}$ and let $A \subseteq R^{n}$ be a semialgebraic set. Recall that $\|\underline{x}\|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$. Show that the following sets are semialgebraic.

- the closure of $A: \operatorname{cl}(A)=\left\{\underline{x} \in R^{n} \mid \forall t \in R \exists \underline{y} \in A\left(\|\underline{y}-\underline{x}\|^{2}<t^{2} \vee t=0\right)\right\}$,
- the interior of $A: \operatorname{int}(A)=\left\{\underline{x} \in A \mid \exists t \in R \forall \underline{y} \in R^{n}\left(\|\underline{y}-\underline{x}\|^{2}<t^{2} \Rightarrow \underline{y} \in A\right)\right\}$,
- the boundary of A in $R: \partial A=\left\{\underline{x} \in R^{n} \mid \forall t \in R \exists \underline{y} \in A\left(\|\underline{y}-\underline{x}\|^{2}<t^{2}\right) \wedge \exists \underline{z} \in\right.$ $\left.R^{n} \backslash A\left(\|\underline{z}-\underline{x}\|^{2}<t^{2}\right)\right\}$.
(b) Describe the closure $\mathrm{cl}(A)$ of the semialgebraic set

$$
A=\left\{(x, y) \in R^{2} \mid x^{3}-x^{2}-y^{2}>0\right\} .
$$

Exercise 31

(4 points)
Let R be a real closed field. Let $A \subseteq R^{n}, B \subseteq R^{m}$ be semialgebraic sets for some $n, m \in \mathbb{N}$.
(a) Show that any polynomial map $f: A \rightarrow R$, i.e. any map of the form $f=\left.p\right|_{A}$ for some $p \in R\left[X_{1}, \ldots X_{n}\right]$, is semialgebraic.
(b) Show that any regular rational map $f: A \rightarrow B$, i.e. a map of the form

$$
f=\left(\frac{g_{1}}{h_{1}}, \ldots, \frac{g_{m}}{h_{m}}\right)
$$

with $g_{i}, h_{i} \in R\left[X_{1}, \ldots X_{n}\right]$ and $h_{i}(\underline{a}) \neq 0$ for any $\underline{a} \in A$, is semialgebraic.
(c) Let $f, g: A \rightarrow R$ be semialgebraic maps. Show that the maps $\max (f, g): x \mapsto \max (f(x), g(x))$, $\min (f, g): x \mapsto \min (f(x), g(x))$ and $|f|$ are semialgebraic.
(d) Let $f: A \rightarrow R$ be a semialgebraic map with $f \geq 0$. Show that \sqrt{f} is semialgebraic.

Exercise 32

(4 points)
Let R be a real closed field, let A, B, C be semialgebraic sets and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be semialgebraic maps.
(a) Show that $g \circ f$ is semialgebraic.
(b) Show that for any semialgebraic subsets $S \subseteq A$ and $T \subseteq B$ also $f(S)$ and $f^{-1}(T)$ are semialgebraic.
(c) Let $\mathcal{S}(A):=\{f: A \rightarrow R \mid f$ is semialgebraic $\}$. Show that $\mathcal{S}(A)$ endowed with pointwise addition and multiplication is a commutative ring with an identity.

Please hand in your solutions by Thursday, 22 December 2022, 10:00h in the postbox 14 or per e-mail to your tutor.

