Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Dr. Michele Serra Moritz Schick WS 2022 / 2023

Real Algebraic Geometry I

Exercise Sheet 8 Semialgebraic sets II

Exercise 29 (4 points)

Let $n, s \in \mathbb{N}$ and let $f_i(\underline{T}, X)$ for i = 1, ..., s be a sequence of polynomials in n + 1 variables with coefficients in \mathbb{Z} . For each of the following statements A_k , show that there exists a boolean combination $B_k(\underline{T}) = S_{k,1}(\underline{T}) \vee ... \vee S_{k,p}(\underline{T})$ of polynomial equations and inequalities in the variables \underline{T} with coefficients in \mathbb{Z} , such that for any real closed field R and any $\underline{t} \in \mathbb{R}^n$ we have that $A_k(\underline{t})$ holds true if and only if $B_k(\underline{t})$ holds true in R.

- (a) $A_1(\underline{t})$: Exactly one of the polynomials $f_1(\underline{t}, X), \ldots, f_s(\underline{t}, X)$ has a zero in R.
- (b) $A_2(\underline{t})$: Each of the polynomials $f_1(\underline{t}, X), \ldots, f_s(\underline{t}, X)$ has the same number of distinct zeros in R.
- (c) $A_3(\underline{t})$: The polynomials $f_1(\underline{t}, X), \ldots, f_s(\underline{t}, X)$ have pairwise distinct zeros, i.e. no two of these polynomials have a common zero.
- (d) $A_4(\underline{t})$: For any $x \in R$,

 $|\{i \in \{1, \dots, s\} \mid f_i(\underline{t}, x) > 0\}| = |\{i \in \{1, \dots, s\} \mid f_i(\underline{t}, x) < 0\}|,\$

i.e. the number of polynomials amongst $f_1(\underline{t}, X), \ldots, f_s(\underline{t}, X)$ which are positive in x is equal to the number of those which are negative in x.

Exercise 30 (4 points) Let R be a real closed field.

- (a) Let $n \in \mathbb{N}$ and let $A \subseteq \mathbb{R}^n$ be a semialgebraic set. Recall that $||\underline{x}|| = \sqrt{x_1^2 + \ldots + x_n^2}$. Show that the following sets are semialgebraic.
 - the closure of A: $\operatorname{cl}(A) = \{ \underline{x} \in \mathbb{R}^n \mid \forall t \in \mathbb{R} \exists y \in A \ (||y \underline{x}||^2 < t^2 \lor t = 0) \},\$
 - the interior of A: $int(A) = \{ \underline{x} \in A \mid \exists t \in R \ \forall y \in R^n \ (||y \underline{x}||^2 < t^2 \Rightarrow y \in A) \},\$

- the boundary of A in R: $\partial A = \{\underline{x} \in \mathbb{R}^n \mid \forall t \in \mathbb{R} \exists \underline{y} \in A \ (||\underline{y} \underline{x}||^2 < t^2) \land \exists \underline{z} \in \mathbb{R}^n \setminus A \ (||\underline{z} \underline{x}||^2 < t^2)\}.$
- (b) Describe the closure cl(A) of the semialgebraic set

$$A = \left\{ (x, y) \in \mathbb{R}^2 \mid x^3 - x^2 - y^2 > 0 \right\}.$$

Exercise 31

(4 points)

Let R be a real closed field. Let $A \subseteq \mathbb{R}^n$, $B \subseteq \mathbb{R}^m$ be semialgebraic sets for some $n, m \in \mathbb{N}$.

- (a) Show that any polynomial map $f : A \to R$, i.e. any map of the form $f = p|_A$ for some $p \in R[X_1, \ldots, X_n]$, is semialgebraic.
- (b) Show that any regular rational map $f: A \to B$, i.e. a map of the form

$$f = \left(\frac{g_1}{h_1}, \dots, \frac{g_m}{h_m}\right)$$

with $g_i, h_i \in R[X_1, \ldots, X_n]$ and $h_i(\underline{a}) \neq 0$ for any $\underline{a} \in A$, is semialgebraic.

- (c) Let $f, g: A \to R$ be semialgebraic maps. Show that the maps $\max(f, g): x \mapsto \max(f(x), g(x))$, $\min(f, g): x \mapsto \min(f(x), g(x))$ and |f| are semialgebraic.
- (d) Let $f: A \to R$ be a semialgebraic map with $f \ge 0$. Show that \sqrt{f} is semialgebraic.

Exercise 32

(4 points)

Let R be a real closed field, let A, B, C be semialgebraic sets and let $f : A \to B$ and $g : B \to C$ be semialgebraic maps.

- (a) Show that $g \circ f$ is semialgebraic.
- (b) Show that for any semialgebraic subsets $S \subseteq A$ and $T \subseteq B$ also f(S) and $f^{-1}(T)$ are semialgebraic.
- (c) Let $\mathcal{S}(A) := \{f : A \to R \mid f \text{ is semialgebraic}\}$. Show that $\mathcal{S}(A)$ endowed with pointwise addition and multiplication is a commutative ring with an identity.

Please hand in your solutions by **Thursday**, 22 December 2022, 10:00h in the postbox 14 or per e-mail to your tutor.