Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Dr. Michele Serra
Moritz Schick
WS 2022 / 2023

Real Algebraic Geometry I

Exercise Sheet 9 Commutative Algebra

Exercise 33

(4 points)

Let A be the ring (with respect of pointwise addition and multiplication) of continuous functions $f:[0,1] \rightarrow \mathbb{R}$. Find a preordering T and an ordering P of A such that the following conditions are satisfied:
(a) There are infinitely many distinct preorderings T_{i} of A such that $\sum A^{2} \subsetneq T_{i} \subsetneq T$.
(b) There are infinitely many distinct preorderings S_{i} of A such that $T \subsetneq S_{i} \subsetneq P$.

Exercise 34

(6 points)

Let A be a commutative ring with 1 such that $\frac{1}{2} \in A$ and let M be a quadratic module in A.
(a) Show that $M \cap(-M)$ is an ideal of A.
(b) Let $a \in A$. Show that the following are equivalent:
(i) $a \in \sqrt{M \cap(-M)}$.
(ii) $a^{2 m} \in M \cap(-M)$ for some $m \in \mathbb{N}$.
(iii) $-a^{2 m} \in M$ for some $m \in \mathbb{N}$.
(c) Let I be an ideal of A and $T=\sum A^{2}+I$. Show that $\sqrt[R]{I}=\sqrt{T \cap(-T)}$.
(d) Let $s, t \in \mathbb{N}, g_{1}, \ldots, g_{s}, h_{1}, \ldots, h_{t} \in A, S=\left\{g_{1}, \ldots, g_{s}\right\}$ and $I=\left\langle h_{1}, \ldots, h_{t}\right\rangle$. Suppose that M_{S} is a preordering in A. Show that $M_{S}+I$ is the preordering in A generated by $S \cup\left\{ \pm h_{i} \mid i \in\right.$ $\{1, \ldots, t\}\}$.

Exercise 35

(4 points)
(a) Let A be a commutative ring with 1 . Show that any prime ideal of A is radical.
(b) Find a field K and an ideal $I \subseteq K\left[X_{1}, \ldots, X_{n}\right]$ (for some $n \in \mathbb{N}$) such that I is radical but not prime.
(c) Find a field K and an ideal $I \subseteq K\left[X_{1}, \ldots, X_{n}\right]$ (for some $n \in \mathbb{N}$) such that I is prime but not real.

Exercise 36

(4 points)
Let K be a field and $A \subseteq K^{n}$ for some $n \in \mathbb{N}$.
(a) Show that:
(i) $\mathcal{I}(A)$ is an ideal of $K[\underline{X}]$.
(ii) If A is an algebraic set, then $\mathcal{Z}(\mathcal{I}(A))=A$.
(iii) The map $V \mapsto \mathcal{I}(V)$ is an injection from the set of of algebraic subsets of K^{n} into the set of ideals of $K[\underline{X}]$.
(b) (i) Show that for any ideal $I \subseteq K[\underline{X}]$, the inclusion $I \subseteq \mathcal{I}(\mathcal{Z}(I))$ holds.
(ii) Find some ideal $I \subseteq K[\underline{X}]$ such that $I \neq \mathcal{I}(\mathcal{Z}(I))$.

Please hand in your solutions by Thursday, 12 January 2023, 10:00h in the postbox 14 or per e-mail to your tutor.

Happy Christmas brake!

