Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Dr. Michele Serra
Moritz Schick

WS 2022 / 2023

Real Algebraic Geometry I

Exercise Sheet 10 PSD- and SOS polynomials

Exercise 37

Let $f \in \mathbb{R}[\underline{X}]$ be an sos form.
(a) Show that every sos representation of f consists of homogeneous polynomials, i.e. for any $f_{1}, \ldots, f_{s} \in \mathbb{R}[\underline{X}]$,

$$
f=f_{1}^{2}+\ldots+f_{s}^{2} \Longrightarrow f_{1}, \ldots, f_{s} \text { are homogeneous. }
$$

(b) Let $n, d \in \mathbb{N}$ and suppose that $f \in \Sigma_{n, d}$. Show that there is some $s \leq\binom{ n+d}{d}$ such that f can be written as the sum of s squares.

Exercise 38

(4 points)
Let R be a real closed field.
(a) Let $f(X, Y)=X^{6}+X^{4} Y^{2}+3 X^{2} Y^{4}+3 Y^{6}$. Write f as the sum of two squares in $R[X, Y]$.
(b) Let $g(X, Y, Z, T)=2 X^{2}+2 X Y+2 Y^{2}+3 Z^{2}+2 Z T+3 T^{2}$. Write g as the sum of four squares in $R[X, Y, Z, T]$.

Exercise 39

(4 points)
Let $p(\underline{X}) \in \mathbb{R}[\underline{X}]$ be of degree m. Show the following:

1. p is psd if and only if p_{h} is psd.
2. p is sos if and only if p_{h} is sos.

Exercise 40

(4 points)
Let R be a real closed field and $n, m \in \mathbb{N}$. We denote by $\mathcal{P}_{n, m}(R)$ the set of psd forms with coefficients in R of degree m in n variables and by $\Sigma_{n, m}(R)$ the set of sos forms with coefficients in R of degree m in n variables. Show the following:
(a) For every $d \in \mathbb{N}, \mathcal{P}_{2,2 d}(R)=\Sigma_{2,2 d}(R)$.
(b) For every $n \in \mathbb{N}$, $\mathcal{P}_{n, 2}(R)=\Sigma_{n, 2}(R)$.
(c) $\mathcal{P}_{3,4}(R)=\Sigma_{3,4}(R)$.
(Hint: Recall that by the Tarski Transfer Principle, any first order formula in the language of real closed fields without free variables transfers from \mathbb{R} to any real closed field. For part (c) you may use that Hilbert proved that any $f \in \mathcal{P}_{3,4}(\mathbb{R})$ can be expressed as the sum of three squares.)

Please hand in your solutions by Thursday, 19 January 2023, 10:00h in the postbox 14 or per e-mail to your tutor.

