

Real Algebraic Geometry I

Exercise Sheet 12

Exercise 45

Show that the symmetric quaternary quartic $F \in \mathbb{R}[\underline{x}]$ given by

$$F(x_1, x_2, x_3, x_4) = \sum_{j=2}^{4} \sum_{i < j} x_i^2 x_j^2 + \sum_{k=2}^{4} \sum_{j < k} \sum_{k \neq i \neq j} x_i^2 x_j x_k - 2x_1 x_2 x_3 x_4$$

is psd but not sos. (Hint: Recall Proposition 4.2 of Lecture 23.)

Exercise 46

Consider the following version of Robinson's lemma:

Lemma A polynomial P(x, y, z) of degree at most 2 which vanishes at seven of the eight points $(x, y, z) \in \{0, 1\}^3$ must also vanish at the eighth point.

Show that the quaternary quartic:

$$P(x, y, z, w) := x^{2}(x - w)^{2} + [y(y - w) - z(z - w)]^{2} + 2yz(x + y - w)(x + z - w)$$

is psd but not sos.

Exercise 47

Let A be a commutative ring with 1 and let

 $\chi := \operatorname{Hom}(A, \mathbb{R}) = \{ \alpha \colon A \to \mathbb{R} \mid \alpha \text{ is a ring homomorphism} \}.$

Consider the map defined by

$$\chi \to \operatorname{Sper} A \tag{1}$$
$$\alpha \mapsto P_{\alpha} := \alpha^{-1} \left(\mathbb{R}^{\geq 0} \right),$$

where $Sper(A) := \{P : P \text{ is an ordering of } A\}$. Show that:

a) this map is well-defined, i.e. $P_{\alpha} \subseteq A$ is an ordering;

b) this map is injective, i.e. $\alpha \neq \beta \Rightarrow P_{\alpha} \neq P_{\beta}$;

(4 points)

(4 points)

(4 points)

c) $\operatorname{Supp}(P_{\alpha}) = \ker \alpha$

Exercise 48

Keep the notation of **Exercise 46**. For every $a \in A$, define:

$$\hat{a}: \chi \to \mathbb{R}$$

$$\alpha \mapsto \hat{a}(\alpha) := \alpha(a)$$
(2)

(4 points)

and

$$\mathcal{U}(\hat{a}) := \{ \alpha \in \chi \mid \hat{a}(\alpha) > 0 \}.$$

Show that:

- d) the collection $\mathcal{B} := \{ \mathcal{U}(\hat{a}) \mid a \in A \}$ is a sub-base for a topology τ on χ ;
- e) for every $a \in A$ the map $\hat{a}: \chi \to \mathbb{R}$ defined in (2) is continuous with the respect to the topology τ ;
- f) if τ_1 is another topology on χ such that \hat{a} is continuous for every $a \in A$, then $\mathcal{U}(\hat{a}) \in \tau_1$ for every $a \in A$ (i.e. τ_1 has more open sets than τ).

[In other words, the topology τ is the *weakest topology* on χ for which the map \hat{a} is continuous for every $a \in A$.]

g) if we endow Sper A with the spectral topology, then the topology induced by the map in (1) coincide with τ .

[Recall that a sub-basis of open sets for the spectral topology is given by the collection $\{u(a): a \in A\}$ where $u(a) := \{P \in \text{Sper } A: a \notin -P\}$.]

Please hand in your solutions by **Thursday**, 2 February 2023, 10:00h in the postbox 14 or per e-mail to your tutor.