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Real Algebraic Geometry I

Sheet 13* – Solution hints

Exercise 49
Let A be a commutative ring with 1 containing Q. Let T be a generating preprime and M a
maximal proper T -module. Suppose M is Archimedean. Define the map

α : A −→ R
a 7→ inf{r ∈ Q : r − a ∈ M}.

Show that α is a ring homomorphism.

Solution hints: For the well definedness see Lecture 25.
To show α(0) = 0 and α(1) = 1, show that Q+ ⊆ M and that Q− ∩ M = {0}. Use then
0 = inf{r ∈ Q|r ∈ M} = α(0).
To prove additivity: α(a + b) = α(a) = α(b) prove first
Ua + Ub ⊆ Ua+b

and use it to show α(a + b) ≤= α(a) = α(b).
For the opposite inequality define Ia = {r ∈ Q | r − a /∈ M} then prove and use that
Ia + Ib ⊆ Ia+b.

Exercise 50
Let R be a real closed field and let S(T , X) be the system

T2X2
1 + T1X2

2 + T1T2X1 − 1 = 0,

where T = (T1, T2) and X = (X1, X2). Find systems of equalities and inequalities S1(T ), . . . , Sℓ(T )
with coefficients in Q such that

∀T ∈ R2 :
[(

∃X ∈ R2 : S (T , X)
)

⇐⇒
ℓ∨

i=1
Si (T )

]
.
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Solution hints: Standard application of Tarski-Seidenberg. A solution is given by ℓ = 3 and

S1 =
{

T2 = 0
T1 > 0

; S2 =


T2 ̸= 0
−4T1T2 = 0
T 2

1 T 2
2 + 4T2 ≥ 0

; S3 =


T2 ̸= 0
−4T1T2 ≤ 0
T 2

1 T 2
2 + 4T2 ≥ 0

Exercise 51
An ordered field (K, ≤) is called Euclidean if any non-negative element has a square root in K,
i.e. for any x ∈ K with x ≥ 0 there is some y ∈ K such that y2 = x. Construct a Euclidean ordered
field which is not real closed.

Solution hints: This was actually already given as bonus exercise in Sheet 5 (with solution hints!)

Exercise 52

(a) Let T be the set of all elements in R which are transcendental over Q. Show that there is a
bijection between T and R, i.e. that T and R have the same cardinality.

(b) Show that for any set A, there is a set PA with greater cardinality than A, i.e. there is no
surjection from A to PA. Deduce that there are at least countably infinitely many distinct
uncountable cardinalities.

Solution hints:

(a) First show that the set of algebraic numbers is countable. For this, show that Q[X] and Q
have the same cardinality. Thus use the fact that every algebraic number is the root of a finite
degree polynomial over Q. Each such polynomial has finitely many solutions. So the set of
algebraic numbers is the union over all the polynomials over Q of their sets of roots. Thus it is
countable.
Since R is uncountable and the algebraic numbers are countable, the transcendental numbers
must now be uncountable.

(b) Take for PA = P(A), the set of all subsets of A. Then there is an injective map A → PA, x 7→
{x}. Assume there was a surjective map f : A → PA. Let M = {a ∈ A | a /∈ f(a)} ∈ PA.
By surjectivity there must be an x ∈ A such that M = f(x). And by definition of M we get
x ∈ f(x) = M ⇐⇒ x /∈ f(x). Which is a contradiction, so there is no surjective map from A
to PA. Thus PA has cardinality strictly larger than A.
To show the other statement start with R which has uncountable cardinality and form

P(R), P(P(R)), . . .

and apply (a) to prove that each of these has cardinality strictly larger than the last.

Exercise 53
Let S and S′ be the subsets of R[X] given by S = {1 − X, 1 + X}, S′ = {1 − X2}, and let
K = [−1, 1] ⊆ R.
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(a) Show that K = KS = KS′ .

(b) Show that TS and TS′ are saturated.

Solution hints:
For part (a) just write explicitly the sets and compare them.
For part (b) put them in natural description and apply Proposition 3.3 Lecture 25.

Exercise 54
Let (K, ≤) be an ordered field.

(a) Define a relation ∼ on K by a ∼ b if and only if there is some n ∈ N such that |a| < n|b| and
|b| < n|a|. Show that ∼ defines an equivalence relation on K.

(b) Let G = {[a] | a ∈ K \ {0}}, i.e. the set of equivalence classes of K \ {0} under ∼. Let v be the
natural valuation on K, i.e. the map v : K → G ∪ {∞}, a 7→ [a], where ∞ stands for [0]. Show
that G is a group under addition given by [a] + [b] = [ab]. Show that (G ∪ {∞}, ≤) is a totally
ordered set, where the order relation is given by

[a] ≤ [b] :⇐⇒ [a] = [b] ∨ |b| < |a|.

(c) Set 0 = [1]. Let θv = {a ∈ K | v(a) ≥ 0} and let Iv = {a ∈ K | v(a) > 0}. Show that θv is a
ring and that Iv is a maximal ideal of θv.

Solution hints:

(a) Straightforward

(b) Remember to check that the operation is well defined, i.e., it only depends on the classes and
not on the particular representative. Moreover, be careful on what the neutral element should
be. As for the ordering, reflexivity and antisimmetry are apparent. Transitivity and totality
follow directly from the same properties on the ordering on K.

(c) This gives away the neutral element in (b). The key property to prove here is that, for all
a, b ∈ K one has v(a + b) ≥ min{v(a), v(b)}. Then check that θv and Iv are additive subgroups
of K and that θv is also closed under products, while Iv is closed under multiplication by
elements of θv.
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