Fachbereich Mathematik und Statistik
Dr. Michele Serra
Prof. Dr. Salma Kuhlmann

Introduction to Elliptic Curves

Exercise Sheet 1
 Rational points

Exercise 1

(2 points)
Prove that the rational points on a line $L: a X+b Y+c Z$ defined over \mathbb{Q} are parametrised by \mathbb{Q}, i.e., they are in $1: 1$ correspondence with the rational numbers.

Exercise 2

$(2+2+2$ points)
We saw that the complex unit circle $X^{2}+Y^{2}+1=0$ has no rational point. Here we show that the same holds for the circle $X^{2}+Y^{2}-3=0$.
(a) Assume there is a rational point $\left(\frac{m}{n}, \frac{r}{s}\right)$ where the two fractions are reduced. Show that $n=s$.
(b) Show that, for all $x \in \mathbb{Z}$ we have $x^{2} \equiv 0$ or $1(\bmod 3)$.
(c) Deduce a contradiction to the reducedness of the fractions $\left(\frac{m}{n}, \frac{r}{s}\right)$.

Exercise 3

(a) Find a line in $\mathbb{A}^{2}(\overline{\mathbb{Q}})$ with no rational points.
(b) Find all the rational points of the conic (given in affine form by) $C: X^{2}-2 Y^{2}=1$.

Exercise 4

(a) Show that the equation

$$
X^{4}+Y^{4}=Z^{2}
$$

has no integer solution (i.e. $x, y, z \in \mathbb{Z}$ such that $\left.x^{4}+y^{4}=z^{2}\right)$ with $(x, y) \neq(0,0)$.
(b) Find all the rational points of the 4-Fermat curve

$$
F_{4}: X^{4}+Y^{4}=1
$$

Please hand in your solutions by Wednesday, 3 May 2023, 13:30h in the postbox by 4409 or per e-mail to your tutor.

