Fachbereich Mathematik und Statistik Dr. Michele Serra Prof. Dr. Salma Kuhlmann $\mathrm{SS}\,2023$

Universität Konstanz

Introduction to Elliptic Curves

Exercise Sheet 1 **Rational points**

Exercise 1

(2 points)

Prove that the rational points on a line L: aX + bY + cZ defined over \mathbb{Q} are parametrised by \mathbb{Q} , i.e., they are in 1:1 correspondence with the rational numbers.

Exercise 2

(2+2+2 points)We saw that the complex unit circle $X^2 + Y^2 + 1 = 0$ has no rational point. Here we show that the same holds for the circle $X^2 + Y^2 - 3 = 0$.

- (a) Assume there is a rational point $(\frac{m}{n}, \frac{r}{s})$ where the two fractions are reduced. Show that n = s.
- (b) Show that, for all $x \in \mathbb{Z}$ we have $x^2 \equiv 0$ or 1 (mod 3).
- (c) Deduce a contradiction to the reducedness of the fractions $\left(\frac{m}{n}, \frac{r}{s}\right)$.

Exercise 3

- (a) Find a line in $\mathbb{A}^2(\overline{\mathbb{Q}})$ with no rational points.
- (b) Find all the rational points of the conic (given in affine form by) $C: X^2 2Y^2 = 1$.

Exercise 4

(a) Show that the equation

$$X^4 + Y^4 = Z^2$$

has no integer solution (i.e. $x, y, z \in \mathbb{Z}$ such that $x^4 + y^4 = z^2$) with $(x, y) \neq (0, 0)$.

(b) Find all the rational points of the 4-Fermat curve

$$F_4: X^4 + Y^4 = 1.$$

Please hand in your solutions by Wednesday, 3 May 2023, 13:30h in the postbox by F409 or per e-mail to your tutor.

(2+2 points)

(1+3 points)