

Introduction to Elliptic Curves

Exercise Sheet 2
 Group law on cubics

Let K be a field with char $K \neq 2,3$.
Exercise 5 Explicit formula for an elliptic curve in short Weierstraß form
(4 points)
Let $E: Y^{2}=X^{3}+a X+b$. Let $P_{1}=\left(x_{1}, x_{2}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ be two points on $E \cap\{Z \neq 0\}$. Set

$$
\begin{cases}m=\frac{3 x_{1}^{2}+a}{2 y_{1}} & \text { if } x_{1}=x_{2} \wedge y_{1}=y_{2} \neq 0 \\ m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} & \text { otherwise }\end{cases}
$$

Show that $P_{1}+P_{2}=\left(x_{3}, y_{3}\right)$ where $x_{3}=m^{2}-x_{1}-x_{2}$ and $y_{3}=-y_{1}-m\left(x_{3}-x_{1}\right)$.
The cases where $P_{1}=O$ or $P_{1}=O$ are known.

Exercise 6

(2+2 points)
(a) Deduce that, if $K \subseteq L \subseteq \bar{K}$ is an extension of K, then $(E(L),+)$ is a subgroup of $(E(\bar{K}),+)$.
(b) Derive a formula for the opposite $-P$ of a point $P=(x, y) \in E(\bar{K})$ when E is an elliptic curve given by a

- medium Weierstraß equation: $E: Y^{2}=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$;
- long Weierstraß equation: $E: Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.

Exercise 7 Group law for "additive" singular cubics

(4 points)
We have encountered the two possible types of singular cubics. Let

$$
C: Y^{2}=f(X)=X^{3}+a X+b
$$

We know that C is singular if and only if $\Delta=-4 a^{3}-27 b^{2}=0$, in which case f has a double root $\alpha \in \bar{K}$. We saw that the only singularity occurs then at the point $P_{0}=(\alpha, 0)$ (in affine coordinates). Let $C_{n s}(\bar{K}):=C(\bar{K}) \backslash\left\{P_{0}\right\}$.
Assuming α is a triple root of f, show that the map

$$
\begin{array}{rlc}
\phi:\left(C_{n} s(\bar{K}), \oplus\right) & \longrightarrow & (\bar{K},+) \\
(x, y) & \longmapsto & \frac{x}{y}
\end{array}
$$

is an isomorphism of abelian groups, where $(\bar{K},+)$ is the additive group of \bar{K} and \oplus is defined on $C_{n} s(\bar{K}$ in the same way as for elliptic curves.
Because of this isomorphism we call such singular cubics additive.
In the case where f has a double root (at 0) and a simple root α, one can show that
(i) $\left(C_{n} s(\bar{K}), \oplus\right) \simeq\left(\bar{K}^{\times}, \cdot\right)$, if $\alpha \in K-$ split-multiplicative
(ii) $\left(C_{n} s(\bar{K}), \oplus\right) \simeq\left\{r+s \alpha: r, s \in K, r^{2}-s^{2} \alpha^{2}=1\right\} \subseteq(K(\alpha), \cdot)$ - non-split-multiplicative

Exercise 8

(a) Let $E: Y^{2}=X^{3}+73$ and let $P=(2,9)$ and $Q=(3,10)$. Note that $P, Q \in E(\mathbb{Q})$.

Compute $-P, 2 P:=P+P$ and $P+Q$.
(b) Now let $E: Y^{2}=X^{3}+10 X+6$. Find all points of order 2 of $E(\overline{\mathbb{Q}})$, i.e., P such that $2 P=O$.

Please hand in your solutions by Wednesday, 17 May 2023, 13:30h in the postbox by F409 or per e-mail to your tutor.

