

Introduction to Elliptic Curves

Exercise Sheet 3
 Endomorphisms of Elliptic Curves

Exercise 9 Inseparable polynomials in positive characteristic
(4 points)
Let K be a field. Recall that a polynomial $f(X) \in K[X]$ is called separable if $f^{\prime}(X)$ is not identically zero. It is called inseparable otherwise.
Now let char $K=p>0$. Show that a polynomial $f(X) \in K[X]$ is inseparable if and only if there exists a polynomial $h(X) \in K[X]$ such that $f(X)=h\left(X^{p}\right)$.

Exercise 10

$(2+2+3+1$ points)
Let E be an elliptic curve over a field K and let $\varphi \in \operatorname{End}(E)$ be a non-zero separable endomorphism In this exercise we establish that
(i) $\varphi: E(\bar{K}) \rightarrow E(\bar{K})$ is surjective.
(ii) For all $P \in E(\bar{K})$ we have $\left|\varphi^{-1}(P)\right|=|\operatorname{ker}(\varphi)|$.
(iii) $|\operatorname{ker}(\varphi)|=\operatorname{deg}(\varphi)$.
(a) Let $Q \in E(\bar{K})$ be such that $\varphi^{-1}(Q) \neq \emptyset$. Show that $\left|\varphi^{-1}(Q)\right|=|\operatorname{ker}(\varphi)|$. Showing (i) will then imply (ii).
(b) Let φ have degree m and be given by the rational functions

$$
\varphi(X, Y)=\left(r_{1}(X), r_{2}(X) Y\right)=\left(\frac{a(X)}{c(X)}, \frac{b(X)}{d(X)} Y\right)
$$

with $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, d)=1$. Consider the following sets

$$
\begin{aligned}
& S_{1}=\{Q=(u, v) \in E(\bar{K}): u=0 \text { or } \operatorname{deg}(u c(X)-a(X))<\operatorname{deg}(\varphi)\} ; \\
& S_{2}=\left\{Q=(u, v) \in E(\bar{K}): \exists x \in \bar{K} \text { s.t. } u=r_{1}(x) \wedge r_{1}^{\prime}(x)=0\right\} ; \\
& S_{3}=\left\{Q=(u, v) \in E(\bar{K}): \exists x \in \bar{K} \text { s.t. } u=r_{1}(x) \wedge r_{2}(x)=0\right\} .
\end{aligned}
$$

Show that all these three sets are finite.
(c) Let $S=S_{1} \cup S_{2} \cup S_{3}$. Show that, for all $Q=(u, v) \in E(\bar{K}) \backslash S$, we have $\left|\varphi^{-1}(Q)\right|=|\operatorname{deg}(\varphi)|$.
(d) Deduce (i) and (iii).

Exercise 11

(4 points)
Let E be an elliptic curve over a field K. Show that the map $\mathbb{Z} \rightarrow \operatorname{End}(E), m \mapsto[m]$ is an injective ring homomorphism.

Exercise 12 - Bonus (The Parallelogram Identity)
(6 points)
Prove the following, which allows to show in a quick way that, for all $m \in \mathbb{Z}, \operatorname{deg}([m])=m^{2}$.
Theorem Let E be an elliptic curve over a field K and let $\alpha, \beta \in \operatorname{End}(E)$. Then

$$
\operatorname{deg}(\alpha+\beta)+\operatorname{deg}(\alpha-\beta)=2(\operatorname{deg}(\alpha)+\operatorname{deg}(\beta))
$$

Hints: This can be proven in an elementary way, but it is not straightforward. A proof will be presented in the next tutorial.

- Note that the cases $\alpha=0, \beta=0, \alpha= \pm \beta$ follow easily from what we already know.
- The theorem follows from

$$
\begin{equation*}
\operatorname{deg}(\alpha+\beta)+\operatorname{deg}(\alpha-\beta) \leq 2(\operatorname{deg}(\alpha)+\operatorname{deg}(\beta)) \tag{1}
\end{equation*}
$$

- Show (1) (this takes some work!).

Please hand in your solutions by Wednesday, 31 May 2023, 13:30h in the postbox by F409 or per e-mail to your tutor.

