Fachbereich Mathematik und Statistik Dr. Michele Serra Prof. Dr. Salma Kuhlmann SS 2023

Introduction to Elliptic Curves

Exercise Sheet 4 Torsion points and elliptic curves over finite fields

Exercise 13

(2+2 points)

(2+2 points)

For the following elliptic curves, use the Lutz-Nagell theorem to determine the full set of torsion points, and the order of each point. Justify your answers.

- (a) $E: Y^2 = X^3 + 2$
- (b) $E: Y^2 = X^3 + 4X$

Exercise 14

Determine the full set of torsion points of the following elliptic curves, this time without appealing to Lutz-Nagell theorem but using reduction!

(a) $E: Y^2 = X^3 + 8$

(b)
$$E: Y^2 = X^3 + 18X + 72$$

Exercise 15 (The Frobenius endomorphism) (1+1+2 points)Let p be a prime number, let s be a positive natural number and let $q = p^s$. Let \mathbb{F}_q be the field with q elements and let $\overline{\mathbb{F}}_q$ be its algebraic closure.

Now let E be an elliptic curve defined over \mathbb{F}_q and define the Frobenius endomorphism as

$$\begin{array}{cccc} \varphi_q \colon & E(\bar{\mathbb{F}}_q) & \longrightarrow & E(\bar{\mathbb{F}}_q) \\ & & (x,y) & \longmapsto & (x^q,y^q) \end{array}$$

- (a) Show that we have $\mathbb{F}_q = \{x \in \overline{\mathbb{F}}_q : x^q = x\}.$
- (b) Show that φ_q is well defined, i.e., $(x, y) \in E(\bar{\mathbb{F}}_q) \Rightarrow \varphi_q(x, y) \in E(\bar{\mathbb{F}}_q)$.
- (c) Show that |E(F_q)| = deg(φ_q id_E) where the difference φ_q id_E is to be understood in End(E). *Hint to (c):* You may use, without proof, the fact that deg_i(φ_q) = q and deg_s(φ_q) = 1 (i.e., φ_q is purely inseparable).

Exercise 16 (Hasse's inequality)

(4 points)

Let E be an elliptic curve defined over a finite field \mathbb{F}_q of characteristic $\neq 2$. Show taht

$$\left| |E(\mathbb{F}_q)| - (q+1) \right| \le 2\sqrt{q}.$$

Results you can use without proof

• For $\alpha, \beta \in \text{End}(E)$ define

$$\langle \alpha, \beta \rangle := \frac{1}{2} (\deg(\alpha + \beta) - \deg(\alpha) - \deg(\beta))$$

- The map \langle , \rangle : End $(E) \times$ End $(E) \rightarrow \mathbb{Q}$, $(\alpha, \beta) \mapsto \langle \alpha, \beta \rangle$ is a positive definite symmetric bilinear form.
- For $\alpha, \beta \in \text{End}(E)$ and $m, n \in \mathbb{Z}$ we have

$$\deg(m\alpha + n\beta) = m^2 \deg(\alpha) + 2mn\langle \alpha, \beta \rangle + n^2 \deg(\beta)$$

• (Cauchy-Schwarz inequality)

$$\langle \alpha, \beta \rangle^2 \le \deg(\alpha) \deg(\beta)$$

Please hand in your solutions by Wednesday, 14 June 2023, 13:30h in the "envelope-postbox" by F409 or per e-mail to your tutor.