Dr. Michele Serra

Prof. Dr. Salma Kuhlmann

Introduction to Elliptic Curves

Exercise Sheet 4
 Torsion points and elliptic curves over finite fields

Exercise 13

$(2+2$ points $)$
For the following elliptic curves, use the Lutz-Nagell theorem to determine the full set of torsion points, and the order of each point. Justify your answers.
(a) $E: Y^{2}=X^{3}+2$
(b) $E: Y^{2}=X^{3}+4 X$

Exercise 14
($2+2$ points)
Determine the full set of torsion points of the following elliptic curves, this time without appealing to Lutz-Nagell theorem but using reduction!
(a) $E: Y^{2}=X^{3}+8$
(b) $E: Y^{2}=X^{3}+18 X+72$

Exercise 15 (The Frobenius endomorphism)
Let p be a prime number, let s be a positive natural number and let $q=p^{s}$. Let \mathbb{F}_{q} be the field with q elements and let $\overline{\mathbb{F}}_{q}$ be its algebraic closure.
Now let E be an elliptic curve defined over \mathbb{F}_{q} and define the Frobenius endomorphism as

$$
\begin{array}{rllc}
\varphi_{q}: & E\left(\overline{\mathbb{F}}_{q}\right) & \longrightarrow & E\left(\overline{\mathbb{F}}_{q}\right) \\
(x, y) & \longmapsto & \left(x^{q}, y^{q}\right)
\end{array}
$$

(a) Show that we have $\mathbb{F}_{q}=\left\{x \in \overline{\mathbb{F}}_{q}: x^{q}=x\right\}$.
(b) Show that φ_{q} is well defined, i.e., $(x, y) \in E\left(\overline{\mathbb{F}}_{q}\right) \Rightarrow \varphi_{q}(x, y) \in E\left(\overline{\mathbb{F}}_{q}\right)$.
(c) Show that $\left|E\left(\mathbb{F}_{q}\right)\right|=\operatorname{deg}\left(\varphi_{q}-\mathrm{id}_{\mathrm{E}}\right)$
where the difference $\varphi_{q}-\mathrm{id}_{\mathrm{E}}$ is to be understood in $\operatorname{End}(E)$.
Hint to (c): You may use, without proof, the fact that $\operatorname{deg}_{i}\left(\varphi_{q}\right)=q$ and $\operatorname{deg}_{s}\left(\varphi_{q}\right)=1$ (i.e., φ_{q} is purely inseparable).

Exercise 16 (Hasse's inequality)
(4 points)
Let E be an elliptic curve defined over a finite field \mathbb{F}_{q} of characteristic $\neq 2$. Show taht

$$
\left|\left|E\left(\mathbb{F}_{q}\right)\right|-(q+1)\right| \leq 2 \sqrt{q} .
$$

Results you can use without proof

- For $\alpha, \beta \in \operatorname{End}(E)$ define

$$
\langle\alpha, \beta\rangle:=\frac{1}{2}(\operatorname{deg}(\alpha+\beta)-\operatorname{deg}(\alpha)-\operatorname{deg}(\beta))
$$

- The map $\langle\rangle:, \operatorname{End}(E) \times \operatorname{End}(E) \rightarrow \mathbb{Q},(\alpha, \beta) \mapsto\langle\alpha, \beta\rangle$ is a positive definite symmetric bilinear form.
- For $\alpha, \beta \in \operatorname{End}(E)$ and $m, n \in \mathbb{Z}$ we have

$$
\operatorname{deg}(m \alpha+n \beta)=m^{2} \operatorname{deg}(\alpha)+2 m n\langle\alpha, \beta\rangle+n^{2} \operatorname{deg}(\beta)
$$

- (Cauchy-Schwarz inequality)

$$
\langle\alpha, \beta\rangle^{2} \leq \operatorname{deg}(\alpha) \operatorname{deg}(\beta)
$$

Please hand in your solutions by Wednesday, 14 June 2023, 13:30h in the "envelope-postbox" by $\mathbf{F} 409$ or per e-mail to your tutor.

