1

Fachbereich Mathematik und Statistik Dr. Michele Serra Prof. Dr. Salma Kuhlmann SS 2023

Introduction to Elliptic Curves

Exercise Sheet 5 Heights

Recall the definition of the *logarithmic height* on \mathbb{Q} :

 $\forall x = \frac{a}{b} \in \mathbb{Q}, \qquad h(x) = \log H(x)$ where a/b is in reduced form and $H(x) = \max\{|a|, |b|\}.$

Let E be an elliptic curve over \mathbb{Q} . Then we defined the *naïve height* on E by

 $h \colon E(\mathbb{Q}) \to \mathbb{R}_{\geq 0}, \qquad h(P) = \begin{cases} h(x) & \text{if } P = (x, y) \neq O \\ 0 & \text{if } P = O \end{cases}$

Exercise 17

Show that there exists a constant $c_2 \in \mathbb{R}_{>0}$ such that, for all $P, Q \in E(\mathbb{Q})$ we have

Hints: Assume wlog that $E: Y^2 = X^3 + AX + B$ and call $x_i = \frac{a_i}{b_i}$, i = 1, 2, 3, 4 the X-coordinate of P, Q, P + Q and P - Q, respectively. Let $H_i = H(x_i)$ and $h_i = h(x_i)$. Use the identities from the proof of the parallelogram law (for points) and the properties of the height H proved in class.

 $h(P+Q) + h(P-Q) \le 2h(P) + 2h(Q) + c_2$

Exercise 18

Show that there exists a constant $c_3 \in \mathbb{R}_{>0}$ such that , for all $P \in E(\mathbb{Q})$ we have

Hint: If P = (x, y) with x = a/b and 2P = (x', y') write x' as a fraction of polynomials F(a, b)/G(a, b) and apply the properties of the height H.

 $4h(P) < h(2P) + c_3$

Exercise 19

The canonical height \hat{h} on E is defined, for all $P \in E(\mathbb{Q})$, by

(a) The map $\hat{h}: E(\mathbb{Q}) \to \mathbb{R}_{\geq 0}$ is well defined, i.e., the sequence $(4^{-n}h(2^nP))_{n\in\mathbb{N}}$ converges, for all $P \in E(\mathbb{Q})$.

 $\hat{h}(P) = \lim_{n \to \infty} \frac{1}{4^n} h(2^n P).$

Hint: Use Exercise 18.

$E(\mathbb{Q}),$ by

0

(6 points)

(4 points)

(2+2+2 points)

Universität

Konstanz

- (b) There exists a constant $c_0 > 0$ such that, for all $P \in E(\mathbb{Q})$ we have $|h(P) \hat{h}(P)| \le c_0$.
- (c) The parallelogram law. For all $P,Q\in E(\mathbb{Q})$ we have

$$\hat{h}(P+Q) + \hat{h}(P-Q) = 2\hat{h}(P) + 2\hat{h}(Q).$$

Please hand in your solutions by Wednesday, 28 June 2023, 13:30h in the "envelope-postbox" by F409 or per e-mail to your tutor.