

# Introduction to Elliptic Curves 

## Exercise Sheet 5

## Heights

Recall the definition of the logarithmic height on $\mathbb{Q}$ :

$$
\forall x=\frac{a}{b} \in \mathbb{Q}, \quad h(x)=\log H(x)
$$

where $a / b$ is in reduced form and $H(x)=\max \{|a|,|b|\}$.
Let $E$ be an elliptic curve over $\mathbb{Q}$. Then we defined the naïve height on $E$ by

$$
h: E(\mathbb{Q}) \rightarrow \mathbb{R}_{\geq 0}, \quad h(P)= \begin{cases}h(x) & \text { if } P=(x, y) \neq O \\ 0 & \text { if } P=O\end{cases}
$$

## Exercise 17

(6 points)
Show that there exists a constant $c_{2} \in \mathbb{R}_{>0}$ such taht, fora all $P, Q \in E(\mathbb{Q})$ we have

$$
h(P+Q)+h(P-Q) \leq 2 h(P)+2 h(Q)+c_{2}
$$

Hints: Assume wlog that $E: Y^{2}=X^{3}+A X+B$ and call $x_{i}=\frac{a_{i}}{b_{i}}, i=1,2,3,4$ the $X$-coordinate of $P, Q, P+Q$ and $P-Q$, respectively. Let $H_{i}=H\left(x_{i}\right)$ and $h_{i}=h\left(x_{i}\right)$. Use the identities from the proof of the parallelogram law (for points) and the properties of the height $H$ proved in class.

## Exercise 18

(4 points)
Show that there exists a constant $c_{3} \in \mathbb{R}_{>0}$ such that, for all $P \in E(\mathbb{Q})$ we have

$$
4 h(P) \leq h(2 P)+c_{3}
$$

Hint: If $P=(x, y)$ with $x=a / b$ and $2 P=\left(x^{\prime}, y^{\prime}\right)$ write $x^{\prime}$ as a fraction of polynomials $F(a, b) / G(a, b)$ and apply the properties of the height $H$.

## Exercise 19

The canonical height $\hat{h}$ on $E$ is defined, for all $P \in E(\mathbb{Q})$, by

$$
\hat{h}(P)=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} h\left(2^{n} P\right)
$$

Show that
(a) The map $\hat{h}: E(\mathbb{Q}) \rightarrow \mathbb{R}_{\geq 0}$ is well defined, i.e., the sequence $\left(4^{-n} h\left(2^{n} P\right)\right)_{n \in \mathbb{N}}$ converges, for all $P \in E(\mathbb{Q})$.
Hint: Use Exercise 18.
(b) There exists a constant $c_{0}>0$ such that, for all $P \in E(\mathbb{Q})$ we have $|h(P)-\hat{h}(P)| \leq c_{0}$.
(c) The parallelogram law. For all $P, Q \in E(\mathbb{Q})$ we have

$$
\hat{h}(P+Q)+\hat{h}(P-Q)=2 \hat{h}(P)+2 \hat{h}(Q) .
$$

Please hand in your solutions by Wednesday, 28 June 2023, 13:30h in the "envelope-postbox" by F409 or per e-mail to your tutor.

