Fachbereich Mathematik und Statistik Dr. Michele Serra Prof. Dr. Salma Kuhlmann SS 2023

Introduction to Elliptic Curves

Exercise Sheet 6 Isogenies

Let K be a field with char $K \neq 2,3$. Let $E_1: Y^2 = f_1(X)$ and $E_2: Y^2 = f_2(X)$ be elliptic curves defined over K in short Weierstraß form, where $f_i(X) = X^3 + a_i X + b_i$, for i = 1, 2.

Exercise 20 (Optional – it just consists of adapting the case of endomorphisms) (2 points) Let $\varphi: E_1 \to E_2$ be an isogeny. Show that there exist polynomials $u, v, s, t \in K[X]$ such that gcd(u, v) = gcd(s, t) = 1 and, for all $(x : y : 1) \in E(\overline{K})$ we have

$$\varphi(x:y:1) = (u(x)t(x):s(x)v(x)y:v(x)t(x)).$$
(1)

We call this the *canonical* or *standard* form of φ . We can also use the affine representation

$$\varphi(x,y) = \left(\frac{u(x)}{v(x)}, \frac{s(x)}{t(x)}y\right)$$

notice that, v or t might vanish at some points – you will characterise these in Exercise 22(a).

Let $\varphi: E_1 \to E_2$ be an isogeny and let its canonical form be given by (1). Show that:

Exercise 21

- (a) $v^3 \mid t^2$ and $t^2 \mid v^3 f_1$.
- (b) v(X) and t(X) have the same roots in \overline{K} .

Exercise 22

- (a) For a point $O \neq P = (x, y) \in E(K)$ we have $P \in \ker(\varphi) \iff v(x) = 0$
- (b) $\ker(\varphi)$ is a finite subgroup of $E(\bar{K})$.

Please hand in your solutions by Wednesday, 12 July 2023, 13:30h in the "envelope-postbox" by F409 or per e-mail.

(6+1 points)

(2+2 points)