Fachbereich
Mathematik und Statistik

  Logo 
der Universität Konstanz

Prof. Dr. Heinrich Freistühler

Forschung

Heinrich Freistühlers Interessen betreffen die Analysis und ihre Anwendungen, im einzelnen: Aus diesen und verwandten Bereichen können auch Themen für Studienabschluss- oder Doktorarbeiten
vergeben werden.



Einige Publikationen:

H. F.: Time-Asymptotic Stability for First-Order Symmetric Hyperbolic Systems of Balance Laws in Dissipative Compressible Fluid Dynamics. Quart. Appl. Math. 81 (2023), 597-606.

H. F.: Hyperbolische Modelle der Mathematischen Fluiddynamik, Vorlesungsskript Wintersemester 2022/23

H. F.: Relativistic barotropic fluids: A Godunov-Boillat formulation for their dynamics and a discussion of two special classes. Arch. Ration. Mech. Anal., online first, 2018.

H. F. and Blake Temple: Causal dissipation in the relativistic dynamics of barotropic fluids. J. Math. Phys. 59 (2018), no. 6, 063101, 17 pp.

H. F.: A relativistic version of the Euler-Korteweg equations. Methods Appl. Anal. 25 (2018), no. 1, 1-12.

H. F. and M. Kotschote: Phase-field descriptions of two-phase compressible fluid flow: interstitial working and a reduction to Korteweg theory. Q. Appl. Math., online first, 2018. THIS IS A SUPPLEMENT TO ARMA 224 (2017), 1-20.

H. F. and Jan Fuhrmann: Nonlinear waves and polarization in diffusive directed particle flow. SIAM J. Appl. Math. 78 (2018), 759-773.

H. F. and Blake Temple: Causal dissipation for the relativistic dynamics of ideal gases. Proc. R. Soc. A 473 (2017), 20160729.

H.F., Felix Kleber, and Johannes Schropp: Emergence of unstable modes for classical shock waves in isothermal ideal MHD. Phys. D 358 (2017), 25-32

H.F. and Matthias Kotschote: Phase-field and Korteweg-type models for the time-dependent flow of compressible two-phase fluids. Arch. Ration. Mech. Anal. 224 (2017), 1-20.

Blake Barker, H.F., Kevin Zumbrun: Convex entropy, Hopf bifurcation, and viscous and inviscid shock stability. Arch. Ration. Mech. Anal. 217 (2015), no. 1, 309-372.

H.F. and Blake Temple: Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation. Proc. R. Soc. Lond. Ser. A 470 (2014), 20140055.

H. F. and Yuri Trakhinin: Symmetrizations of RMHD equations and stability of relativistic current-vortex sheets. Classical and Quantum Gravity 30 (2013) 085012.

Martina Preusse, H.F., Frank Peeters: Seasonal variation of solitary wave properties in Lake Constance. Journal of Geophysical Research: Oceans 117 (2012) C04026.

H.F. and Peter Szmolyan: Spectral stability of small-amplitude viscous shock waves in several space dimensions. Arch. Rational Mech. Anal. 195 (2010) 353-373.

H.F. and Yuri Trakhinin: On the viscous and inviscid stability of magnetohydrodynamic shock waves. Physica D 237 (2008), 3030-3037.

H.F. and Mohammedreza Raoofi: Stability of perfect-fluid shock waves in special and general relativity. Classical and Quantum Gravity 24 (2007), 4439-4455.

H.F. and Ramon G. Plaza: Normal modes and nonlinear stability behaviour of dynamic phase boundaries in elastic materials. Arch. Rational Mech. Anal. 186 (2007), 1-24.

Sylvie Benzoni-Gavage and H.F.: Effects of surface tension on the stability of dynamical liquid-vapor interfaces. Arch. Rational Mech. Anal. 174 (2004), 111-150.

H. F. and Christian Rohde: The bifurcation analysis of the MHD Rankine-Hugoniot equations for a perfect gas. Physica D 185 (2003), 78-96.

H.F. and Denis Serre: L1 stability of shock waves in scalar viscous conservation laws. Comm. Pure Appl. Math. 51 (1998), 291-301.