- A. Gerisch, M.K., R. Zacher:
Well-posedness of a quasilinear hyperbolic-parabolic system arising
in mathematical biology. NoDEA Nonlinear Differential Equations Appl. 14, 593-624 (2007).
- Strong solutions for a compressible fluid model of Korteweg type.
Ann. Inst. Henri Poincaré Anal. Non Linéaire 25, 4 (2008) 679-696.
- Maximal L_p-regularity for a linear three phase system of parabolic-elliptic type.
J. Evol. Equ. 10, no 2, 293-318 (2010).
- Strong well-posedness for a Korteweg type model for the dynamics of a compressible non-isothermal fluid.
Journal of Mathematical Fluid Mechanics 12, no. 4, 473-484.
- Dynamics of compressible non-isothermal fluids of non-Newtonian Korteweg-type.
SIAM J. Math. Anal. 44, pp. 74-101 (2012).
- Existence and time-asymptotics of global strong solutions to dynamic Korteweg models. to appear IUMJ
- Strong well-posedness of a quasilinear parabolic-elliptic system with nonlinear transmission condition
arising in chemistry.
Math. Meth. Appl. Sci. 35, Issue 4, 384-397 (2012).
- Strong solutions to the compressible non-isothermal Navier-Stokes equations.
AMSA 22, 319-347 (2012).
- Strong solutions of the Navier-Stokes equations for a compressible fluid of Allen-Cahn type.
Arch. Ration. Mech. Anal. 206, no. 2, 489--514 (2012).
- M.K., R. Zacher: Strong solutions in the dynamical theory of compressible two phase fluids, submitted
- Dynamical stability of non-constant equilibria for the compressible Navier-Stokes equations in Eulerian coordinates.
to appear CMP
- H. Freistühler, M.K.: Diffuse planar phase boundaries in a two-phase fluid with one incompressible phase. arXiv:1306.1905
- H. Freistühler, M.K.: Diffuse planar phase boundaries in a two-phase fluid with one very dense phase. arXiv:1307.3647
- H. Freistühler, M.K.: Thermodynamically Consistent Models for the Time-Dependent Flow of
Compressible Two-Phase Fluids.
|