Fachbereich
Mathematik und Statistik

Universität Konstanz
> Prof. Dr. R. Racke > Mitarbeiter > Buddhika Priyasad



Preprints

  1. Differentiability of the Value Function on \(H^1(\Omega)\) of Semilinear Parabolic Infinite Time Horizon Optimal Control Problems under Control Constraints

Publications

  1. Uniform Stabilization of Navier-Stokes Equations in Critical \(L^q\)-Based Sobolev and Besov Spaces by Finite Dimensional Interior Localized Feedback Controls [with Lasiecka, I., Triggiani, R.]. Appl Math Optim (2019).
  2. Uniform stabilization of Boussinesq systems in critical \(L^q\)-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls [with Lasiecka, I., Triggiani, R.], Discrete \& Continuous Dynamical Systems - B, 25, 10, 4071, 4117, 2020-6-15.
  3. Finite-dimensional boundary uniform stabilization of the Boussinesq system in Besov spaces by critical use of Carleman estimate-based inverse theory [with Lasiecka, I., Triggiani, R.] Journal of Inverse and Ill-posed Problems, vol. , no. , 2021.
  4. Maximal \(L^q\)-regularity for an abstract evolution equation with application to closed-loop boundary feedback control problems [with Lasiecka, I., Triggiani, R.] Journal of Differential Equations, Vol 294, 2021, Pages 60-87, ISSN 0022-0396.
  5. Uniform Stabilization of 3D Navier–Stokes Equations in Low Regularity Besov Spaces with Finite Dimensional, Tangential-Like Boundary, Localized Feedback Controllers. [with Lasiecka, I., Triggiani, R.] Arch. Rational Mech. Anal. (2021).
  6. Continuous Differentiability of the Value Function of Semilinear Parabolic Infinite Time Horizon Optimal Control Problems on \(L^2(\Omega)\) Under Control Constraints. [with Kunisch, K.] Appl. Math. Optim. 85, 10 (2022).
  7. The existence and dimension of the attractor for a 3D flow of a non-Newtonian fluid subject to dynamic boundary conditions [with Pražák, D.], Applicable Analysis, (2023).